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E lectronic state calculation of hydrogen in metal clusters based on
Gaussian–FEM mixed basis function
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Abstract

The electronic state calculation combining Gaussian basis functions with finite element method (FEM) basis functions is presented. The
electronic state calculation explicitly accounting for the effect of grain boundaries reproduces well the characteristics of hydrogen in metal
materials. FEM is one possible technique because of the high applicability to arbitrary boundary conditions. However, since the wave
function of an electron significantly changes near the nucleus, a large number of nodal points of FEM must be taken. This fact means that
FEM is expected to require high computational costs. We expect that Gaussian–FEM mixed basis function method simultaneously
satisfies the applicability to arbitrary boundary conditions and describes the steeply changing electron distribution. Results are presented
for the electronic state calculation of H , AlH and Al diatomic molecules and Al H cluster without external fields.2 2 4
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1 . Introduction realistic computation time. The existence of a boundary in
a mesoscopic structure forces the matrix element integra-

Hydrogen diffusion in a nanocrystalline metal is strong- tion to be developed by complicated calculation routines.
ly influenced by the grain boundaries[1]. At the grain In the conventional MO method[4], the integral routines
boundary, the configuration of the metal atoms is dis- are generally the most time-consuming processes. There-
ordered. Therefore, it is thought that the electrostatic field fore, another procedure should be adopted for our purpose.
according to the grain-boundary configuration is formed It can be easily seen that the numerical calculation in the
and dispersion also arises in the energy level of the site spatial grid technique is applicable for the inhomogeneous-
which the hydrogen occupies[2]. The electronic state ly distributed potentials. As a possible technique, we
calculation explicitly accounting for the effect of the grain adopted the finite element method (FEM)[5] as is well
boundaries then reproduces the characteristics of hydrogen known in the structural analysis (i.e., for elastic materials)
in the nanocrystalline metal. research field.

The electrostatic potential is distributed over a micro- FEM has already been applied to the electronic state
scopic region for the electronic state calculation, because it calculation[6–8]. The calculation results from this ap-
originates from the inhomogeneous grain-boundary con- proach have been increasingly appearing. However, to
figuration. The conventional molecular orbital (MO) meth- achieve a high accuracy using FEM, the required number
od uses analytical basis functions and the analytical of nodal points is extremely large. The very sharp variation
formulation of the integrals for solving the eigenvalue in the wave function near the nucleus forces this problem
problem [3]. In such processes, the external potential to become more serious. This fact means that FEM is
should be analytically given for the calculations within a expected to also require high computational costs.

We expect that Gaussian–FEM mixed basis function
method simultaneously satisfies the applicability to arbit-*Corresponding author. Tel.:181-561-63-5258; fax:181-561-63-
rary boundary conditions and describes the steeply chang-6137.
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efficiency of this calculation technique is shown upon the C 5 C ,? ? ? , C , C ,? ? ? , C ,s dg1 gn f 1 fm

electronic state calculation of H , AlH and Al diatomic2 2
f 5 S ,? ? ? , S , S ,? ? ? , S . The coefficientC iss dg1 gn f 1 fmmolecules and Al H cluster without external fields.4
determined according to a variational principle.

2 .2. Coulomb integral2 . Calculation method

The contribution of the electron–electron coulombWe developed this program based on the calculation
integration to a Fock matrix elementF is expressed in thescheme for the MO method. In this section, a different ij

formpoint from the ordinary MO method is mainly explained.
(kl )F 5 kS (1)uV uS (1)lij i kl j2 .1. Basis functions

S (2)S (2)k l
]]]5E S (1)S (1)E a a dt dt (4)i j k l 1 2First, an FEM basis function is explained. The case of a r12

one-dimensional grid is considered for simplification. We
with i, j, k, l 5 g1,? ? ? ,gn, f 1,? ? ? , fm. For calculatingused first order basis function in the form

( ff ) ( gf ) ( gg)F , F or F , we used the integration method fromgg gg gg
( ff ) ( gf ) ( gf )S (x)512 x with x # 1 (1)u u u ufx the MO method[9]. As for F , F or F , theff ff g f

calculation scale is significantly expanded since the combi-This is the simplest formulation.Fig. 1 shows the shape of
nation number of the element is huge. When two electronsthis function in comparison with Gaussian basis functions.
do not locate in the same element, we transform Eq. (4)In contrast with Gaussian basis functions ranging over an ( ff ) ( gf ) ( gf )with respect toF , F or F into the followingff ff g felement, this basis function extends only out to the
form using the multipole expansion[10]neighboring nodal points.

On a three-dimensional uniform grid, we use the prod- q q 1ij kl(kl ) ]] ]F 5 a a 1 (q m 2 q m ) ?=ucts of the one-dimensional functions in the form Hij k l ij kl kl ijr r12 12

S (r)5 S (x)S (y)S (z) (2)f fx fy fz 1
]1 (q Q 2m m 1 q Q ): == 1 ? ? ? (5)Jij kl kl ij kl ij r12Eight FEM basis functions are assigned to each element.

We then expand the wave function as the linear combi- with
nation of Gaussian basis functionsS ,? ? ? , S and FEMg1 gn

basis functionsS ,? ? ? , S in the formf 1 fm q 5E S ( p)S ( p)dt ,ij i j p

c(r)5C ? f (3)

m 5Er S ( p)S ( p)dt ,ij p i j pwhere

 Q 5Er r S ( p)S ( p)dt .ij p p i j p

We take into account the term of the secondary nabla
operator in the present study. In Eq. (5), since the explicit
double integration disappeared, the computational cost is
expected to be reduced. When two electrons are located
within the same element, the direct integration of Eq. (4) is
numerically performed.

2 .3. Other conditions

The Kohn–Sham equation was self-consistently solved.
The exchange potential by Becke and the correlation
potential by Lee, Yang, and Parr, which took account of the
generalized gradient approximation, were used[11,12].
Gauss–Legendre integration were adopted to numerically
evaluate the exchange–correlation potential. At each SCF
step, the values of charge density and density gradients
were calculated on the Gauss–Legendre grid in each FEMFig. 1. Schematic representation of Gaussian and FEM basis functions.
element. For calculating the aluminum atom, only theFEM basis functions on neighboring nodal points are represented by the

dashed line. valence 3s and 3p electrons were explicitly treated, and the
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 remaining electrons were replaced by the model potential
(MP) [13]. The equilibrium bond lengths and the harmonic
frequencies of diatomic molecules were calculated by
using the total energies evaluated for several bond lengths.

3 . Results of the test calculations

First, we did calculations for H and examined whether2

Gaussian basis functions and FEM basis functions would
effectively contribute. The number of nodal points per
dimension was 23. The element width was set to 0.7 bohr
(1 bohr60.05291 nm) for all elements. This calculating

3region was cubic with size of 15.4315.4315.4 bohr . The
H–H distance was 1.4 bohr.Table 1 shows the total
electron energies of H . The contribution of FEM basis2

functions to various Gaussian basis functions is investi-
gated. Since only the 3G basis functions cannot express the
spread portion of a wave function, the molecular orbital of
H is not completely expressed. Therefore, the electron2

energy of only the 3G basis functions is significantly
shifted from the exact value. Similarly, approximation of
only FEM basis functions under this calculation condition
also has a low accuracy, since the basis functions cannot
express the steep wave function near the nucleus. On the
other hand, the electron energy of the 3G-FEM mixed
basis functions is equivalent to that of only the 311G**
basis functions. This is because the 3G basis functionsFig. 2. Molecular orbitalc(r) (in arbitrary unit) on a molecular axis of
express a steep portion and FEM basis functions express aH : (a) using 3G-FEM mixed basis functions, and (b) using 311G*-FEM2

spread portion, as shown inFig. 2(a). mixed basis functions. The abscissan denotes the number of nodalFEM

points.Contrary to the 3G basis functions, the 311G** basis
functions can independently almost express the molecular

21orbital, as shown inFig. 2(b). For the 311G**-FEM mixed tained: 3G-FEM (0.0736 nm and 4272 cm ), 31G-FEM
21basis functions, the contribution of FEM basis functions (0.0742 nm and 4365 cm ), and 311G**-FEM (0.0743

21then decreases, but it still remains in the region between nm and 4377 cm ). These values are in agreement with
21the two protons where the linear combination of atomic the reference value (0.0748 nm and 4373 cm ) using

orbital (LCAO) cannot express with accuracy. Further- 31G** under the same exchange-correlation potential as
more, the equilibrium bond length and the harmonic that in Section 2.3.[14].
frequency of H were calculated using various Gaussian– Next, AlH, Al and Al H were calculated. The number2 2 4

FEM mixed basis functions. Following values were ob- of grid points per dimension was the same as that for H .2

The element width was set to 1.2 bohr for all elements.
This calculating region was cubic with size of 26.43T able 1

36 26.4326.4 bohr . Gaussian basis functions[15], corre-Total electron energies (in hartree, 1 hartree62.6255310 J/mol) of H2

using various Gaussian basis functions or using corresponding Gaussian–sponding to the MP, were assigned to an aluminum atom
FEM mixed basis functions and the 31G basis functions were assigned to a hydrogen
CGTO Gaussian Gaussian–FEM uDEu atom. For Gaussian–FEM calculation, Gaussian basis

functions with an exponent greater than one were adopted.3G 20.8474 21.8821 1.0347
The Al–Al and Al–H distances were about 5.41 and 3.3131G 21.8484 21.8846 0.0362

31G** 21.8497 21.8853 0.0356 bohr respectively, assuming that hydrogen occupied the
311G 21.8809 21.8847 0.0038 tetrahedral site in FCC Al.Table 2 shows the orbital
311G** 21.8837 21.8853 0.0016 energies of AlH and Al in the triplet state and Al H in the2 4

a doublet state. In each molecule, the orbital energies ofExact 21.8888
Gaussian–FEM mixed basis functions correspond to that

Differences in the energies between the two basis functions are listed in
of only Gaussian basis functions. Also, Gaussian basisthe right column of the table. The total electron energy only using FEM
functions express the steep portion and FEM basis func-basis functions was21.8173.

a Reference[17]. tions express the spread portion like the calculations for
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T able 2
Orbital energies (in hartree) of AlH, Al and Al H using Gaussian–FEM basis functions. These energies are compared with that only using Gaussian (Al:2 4

6-31G*1diffuse, H: 31G) basis functions for all electrons

AlH Al Al H2 4

MO Gaussian Gaussian MO Gaussian Gaussian MO Gaussian Gaussian
–FEM –FEM –FEM

1 20.3527 20.3496 1 20.3280 20.3296 1 20.5215 20.5440
2 20.2282 20.2263 2 20.2500 20.2476 2 20.2766 20.2781
3 20.1148 20.1179 3 20.1340 20.1386 3 20.2759 20.2758

4 20.1266 20.1290 4 20.2710 20.2717
5 20.2258 20.2256
6 20.1422 20.1461
7 20.1418 20.1441

a-Spin–orbital energies are only displayed here.

21H , as shown inFig. 3. The discrepancy of the molecular the reference value (0.273 nm, 256 cm ) using Gauss2

orbital in an aluminum atom position is caused by replac- functions and MP[16].
ing core electrons by effective potential. The equilibrium As a result of these test calculations, FEM basis
bond length and the harmonic frequency of Al were functions are automatically compensating for the wave2

21respectively calculated as 0.273 nm, 274 cm using this function’s portion, which cannot be expressed only with
mixed basis function. These values are in agreement with Gaussian basis functions. The molecular orbital widely

spread in the calculation space is expected to be sig-
nificantly influenced by the configuration of the inhomoge-
neous electrostatic field. In this method, FEM basis

 

functions, which possess the applicability to arbitrary
boundary conditions, express the spread portion of the
molecular orbital and Gaussian basis functions, which can
describe the steeply changing electron distribution, express
the steep portion. This mixed basis method would be
available for the electrostatic calculation in the inhomoge-
neous electrostatic field.

4 . Conclusions

We have examined Gaussian–FEM mixed-basis function
method as an electronic-state calculation technique. This
method was applied to the H , AlH and Al diatomic2 2

molecules and the Al H cluster. Gaussian basis functions4

express the steep portion and FEM basis functions express
the spread portion of a molecular orbital. Furthermore, we
certify that FEM basis functions are automatically compen-
sating for the wave function’s portion, which cannot be
only expressed by Gaussian basis functions. The ap-
plicability of FEM to arbitrary boundary conditions can be
kept in Gaussian–FEM mixed basis technique by selecting
suitable Gaussian basis components. This method would
be available for the electrostatic calculation in the
inhomogeneous electrostatic field.

Fig. 3. Molecular orbitalc(r) (MO-1 cf. Table 2in arbitrary unit) on a A cknowledgements
molecular axis of AlH: (a) comparison of the molecular orbital between
only using Gaussian basis functions and using Gaussian–FEM basis
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